Complexity and Algorithms for Well-Structured k-SAT Instances

نویسندگان

  • Konstantinos Georgiou
  • Periklis A. Papakonstantinou
چکیده

This paper consists of two conceptually related but independent parts. In the first part we initiate the study of k-SAT instances of bounded diameter. The diameter of an ordered CNF formula is defined as the maximum difference between the index of the first and the last occurrence of a variable. We investigate the relation between the diameter of a formula and the tree-width and the path-width of its corresponding incidence graph. We show that under highly parallel and efficient transformations, diameter and path-width are equal up to a constant factor. Our main result is that the computational complexity of SAT, Max-SAT, #SAT grows smoothly with the diameter (as a function of the number of variables). Our focus is in providing space efficient and highly parallel algorithms, while the running time of our algorithms matches previously known results. Our results refer to any diameter, whereas for the special case where the diameter is O(log n) we show NL-completeness of SAT and NC algorithms for Max-SAT and #SAT. In the second part we deal directly with k-CNF formulas of bounded tree-width. We describe algorithms in an intuitive but not-so-standard model of computation. Then we apply constructive theorems from computational complexity to obtain deterministic time-efficient and simultaneously space-efficient algorithms for k-SAT as asked by Alekhnovich and Razborov [1].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comprehensive Score: Towards Efficient Local Search for SAT with Long Clauses

It is widely acknowledged that stochastic local search (SLS) algorithms can efficiently find models of satisfiable formulae for the Boolean Satisfiability (SAT) problem. There has been much interest in studying SLS algorithms on random k-SAT instances. Compared to random 3-SAT instances which have special statistical properties rendering them easy to solve, random k-SAT instances with long clau...

متن کامل

Scoring Functions Based on Second Level Score for k-SAT with Long Clauses

It is widely acknowledged that stochastic local search (SLS) algorithms can efficiently find models for satisfiable instances of the satisfiability (SAT) problem, especially for random k-SAT instances. However, compared to random 3-SAT instances where SLS algorithms have shown great success, random k-SAT instances with long clauses remain very difficult. Recently, the notion of second level sco...

متن کامل

Improving WalkSAT for Random k-Satisfiability Problem with k > 3

Stochastic local search (SLS) algorithms are well known for their ability to efficiently find models of random instances of the Boolean satisfiablity (SAT) problem. One of the most famous SLS algorithms for SAT is WalkSAT, which is an initial algorithm that has wide influence among modern SLS algorithms. Recently, there has been increasing interest in WalkSAT, due to the discovery of its great ...

متن کامل

Random Θ(log n)-CNFs Are Hard for Cutting Planes

The random k-SAT model is the most important and well-studied distribution over k-SAT instances. It is closely connected to statistical physics and is a benchmark for satisfiability algorithms. We show that when k = Θ(log n), any Cutting Planes refutation for random k-SAT requires exponential size in the interesting regime where the number of clauses guarantees that the formula is unsatisfiable...

متن کامل

Random CNFs are Hard for Cutting Planes

The random k-SAT model is the most important and well-studied distribution over k-SAT instances. It is closely connected to statistical physics; it is used as a testbench for satisfiablity algorithms, and lastly average-case hardness over this distribution has also been linked to hardness of approximation via Feige’s hypothesis. In this paper, we prove that any Cutting Planes refutation for ran...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008